

... for a brighter future

Atom Trap Trace Analysis (ATTA) with Krypton and Argon

Y. Ding, Z.-T. Lu Phys Div, Argonne National Lab (ANL) & EFI, Univ of Chicago (UofC);

K. Bailey, P. Mueller, T.P. O'Connor, K. Rudinger, W. Williams Phys Div, ANL;

R.W. Dunford, L. Young Chem Div, ANL;

A.M. Davis EFI & Dept of Geophys. Sci., UofC;

R. Yokochi, N.C. Sturchio Dept of Earth & Environ Sci, Univ of Illinois at Chicago;

C. Cheng, W. Jiang, S.-M. Hu Hefei National Lab, Univ of Sci & Tech of China.

A U.S. Department of Energy laboratory managed by UChicago Argonne, LLC

Age Range for Different Elements

Radio-Krypton Dating

Dating polar ice to study the climate history of the Earth Dating old groundwater to study the source, sink, and flow pattern of aquifers Applicable age range, 100 kyr – 1 Myr, is beyond the reach of ¹⁴C-dating

• Number of ⁸¹Kr atoms in 1 liter of :

 $\begin{array}{r} \text{Air} \rightarrow 20,000 \\ \text{Water} \rightarrow 1,000 \\ \text{Ice} \rightarrow 1,000 \end{array}$

Task

www.jolyon.co.uk

Earlier Dating Methods

Low Level Counting
Efficiency =
$$\frac{\text{Count Time}}{\text{Life Time}} = \frac{100 \, hr}{230 \, kyr} = 5 \times 10^{-8}$$

Accelerator Mass Spectrometry (AMS) Fast, Sensitive; AMS / LLC = 10⁵ (¹⁴C) Not bothered by decay background

Existing Laser Methods Based on Isotope Shifts Resonance Ionization Spectroscopy (RIS) Photon Burst Spectroscopy

Photon Burst Spectroscopy

G.W. Greenlees *et al.*, Opt. Commun. 23, 236 (1977) V.I. Balykin *et al.*, JETP Lett. 26, 357 (1977)

Magneto-Optical Trap (MOT)

- Long observation time -- 100 ms
- High capture rate -- 10⁹-10¹² s⁻¹
- Narrow linewidth natural linewidth
- Spatial confinement -- trap size < 1 mm

Krypton Isotope Fluorescence

Single Atom Detection

⁸¹Kr Dating

Krypton vs Argon

Krypton

Argon

Isotope	Abundance	Half-Life	Isot
78	0.0035	2.3 x 10 ²⁰ y	36
80	0.0225	Stable	38
81	5 x 10 ⁻¹³	2.3 x 10 ⁵ y	39
82	0.116	Stable	40
83	0.115	Stable	
84	0.57	Stable	
85	2 x10 ⁻¹¹	10.75 y	
86	0.173	Stable	

Isotope	Abundance	Half-Life
36	0.003336	Stable
38	0.000629	Stable
39	8 x 10 ⁻¹⁶	269 y
40	0.996	Stable

We will now look for 1 atom in 10¹⁵ atoms all which look very similar

Why Argon?

Argon Energy Levels

Summary

•We can successfully trap and detect single ⁸¹Kr atoms with an efficiency of ~ 5 x 10⁻³

•ATTA has been used to age underground water in the Sahara Desert

Future Direction:

- Continue to improve efficiency by optimizing system
- Use optical fields to get to metastable state instead of discharge
- After obtaining ³⁹Ar trapping frequency, use ATTA to count ³⁹Ar/⁴⁰Ar

Sturchio et al., Geophys. Res. Lett. (2004)

Atom traps @ Argonne

ATTA Group at Argonne National Lab

From left to right: William Trimble, Brent Graner, Will Williams, Ibrahim Sulai, Roy Holt, Kevin Bailey, Kenneth Rudinger, Bob Yu Sun, Wolfgang Korsch, Peter Mueller, Zheng-Tian Lu, Tom O'Connor

Resonance Ionization Spectroscopy (RIS)

V.S. Letokhov (Russia), G.S. Hurst (ORNL) 1970's

⁸¹Kr: Efficiency: >50% Isotope Selectivity: 10³-10⁴
S.D. Kramer *et al.*, Nucl. Instr. Meth. **B17**, 395(1986)

Low-Level Decay Counting (LLC)

⁸¹Kr (230 kyr) activity: 0.1 dpm/l Kr
⁸⁵Kr (10.7 yr) activity: 3×10⁴ dpm/l Kr

 $Efficiency = \frac{Count \ Time}{Lifetime} = \frac{100 \ hr}{330 \ kyr} = 3 \times 10^{-8}$

Accelerator Mass Spectrometry of Kr-81

Full stripping at high energy (~ 4 GeV) for isobar separation: ⁸¹Kr³⁶⁺ vs. ⁸¹Br³

W. Kutschera *et al.*, NIM B29, 241 (1994 P. Collon *et al.*, NIM B123, 122 (1997)

Argon Levels (Theory)

